Enhanced photodegradation of o-cresol in aqueous Mn(1%)-doped ZnO suspensions.

نویسندگان

  • Y Abdollahi
  • A H Abdullah
  • U I Gaya
  • Z Zainal
  • N A Yusof
چکیده

The effective removal of o-cresol is currently both an environmental and economic challenge. ZnO is not only an efficient photocatalyst but is also cost effective, as its photoabsorption can extend from the ultraviolet (UV) to the visible range thereby allowing the use of inexpensive visible light sources, such as sunlight. The principal objective of the present work is to investigate the visible light-driven removal of o-cresol from aqueous solution in the presence of 1.0 wt% Mn-doped ZnO. To measure the efficiency ofphotodegradation, the variables studied included the amount ofphotocatalyst, concentration of o-cresol, pH and irradiation time. The concentration ofo-cresol and residual organic carbon was monitored using a UV-visible spectrophotometer, ultra high-pressure liquid chromatography and a total organic carbon analyser. The optimum conditions under which the photodegradation of o-cresol was most favourable corresponded to 1.5 g/l ZnO, 35 ppm o-cresol and pH 9. The ZnO-1 wt% Mn photoprocess has demonstrated reusability for more than three times, which warrants its scale-up from laboratory- to in industrial-scale application.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photodegradation of o-cresol by ZnO under UV irradiation

The effective removal of o-cresol is currently both an environmental problem. This paper shows how degradation of o-cresol was carried out, in the presence of UV; by ZnO as photocatalyst. To measure the efficiency of photodegradation, the different variables studied included amount of photocatalyst, concentration of o-cresol and pH. The results showed photodegradation was favorable in the pH 6-...

متن کامل

Photocatalytic degradation of phenylephrine hydrochloride in aqueous solutions by synthesized SnO2-doped ZnO nanophotocatalyst

ZnO and SnO2-doped ZnO nanoparticles were prepared by a sol–gel method for the first time. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize the ZnO and SnO2-doped ZnO samples. Advanced oxidation processes (AOPs) have proved very effective in treatment of the various hazardous organic pollutants such as surfactants and pharmaceuticals...

متن کامل

Photocatalytic degradation of phenylephrine hydrochloride in aqueous solutions by synthesized SnO2-doped ZnO nanophotocatalyst

ZnO and SnO2-doped ZnO nanoparticles were prepared by a sol–gel method for the first time. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize the ZnO and SnO2-doped ZnO samples. Advanced oxidation processes (AOPs) have proved very effective in treatment of the various hazardous organic pollutants such as surfactants and pharmaceuticals...

متن کامل

Raman Submicron Spatial Mapping of Individual Mn-doped ZnO Nanorods

ZnO nanorods (NRs) arrays doped with a large concentration of Mn synthesized by aqueous chemical growth and were characterized by SEM, photoluminescence, Raman scattering, magnetic force microscopy (MFM). By comparison of spectra taken on pure and Mn-doped ZnO NRs, a few new Raman impurity-related phonon modes, resulting from the presence of Mn in the investigated samples. We also present a vib...

متن کامل

Photocatalytic degradation of an azo textile dye with manganese-doped ZnO nanoparticles coated on glass

Mn doped ZnO nanocomposite thin film coated on glass by a simple spin-coating method was used to degrade an azo textile dye from aqueous environment. Mn doped ZnO nanocomposite thin film was characterized by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The photo-reduction activity of photocatalyst was evaluated using an azo textile dye as organic contaminant irradiat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental technology

دوره 33 10-12  شماره 

صفحات  -

تاریخ انتشار 2012